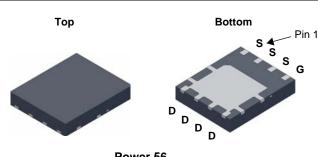
FAIRCHILD

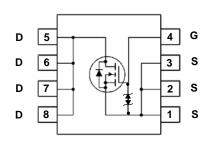
SEMICONDUCTOR

FDMS8848NZ N-Channel PowerTrench[®] MOSFET **40 V, 49 A, 3.1 m**Ω

Features

- Max $r_{DS(on)}$ = 3.1 m Ω at V_{GS} = 10 V, I_D = 22.8 A
- Max $r_{DS(on)} = 5.1 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 17.5 \text{ A}$
- Advanced Package and Silicon combination for low r_{DS(on)} and high efficiency
- MSL1 robust package design
- RoHS Compliant




General Description

The FDMS8848NZ has been designed to minimize losses in power conversion application. Advancements in both silicon and package technologies have been combined to offer the lowest r_{DS(on)} while maintaining excellent switching performance.

Applications

- Computing VR & IMVP Vcore
- Secondary Side Synchronous Rectifier
- POL DC/DC Converter
- Oring FET/ Load Switching

Power 56

MOSFET Maximum Ratings T_C = 25 °C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			40	V	
V _{GS}	Gate to Source Voltage			±20	V	
I _D	Drain Current -Continuous (Package limited)	T _C = 25 °C		49		
	-Continuous (Silicon limited)	T _C = 25 °C		143	٨	
	-Continuous	T _A = 25 °C	(Note 1a)	22.8	Α	
	-Pulsed			90		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	480	mJ	
D	Power Dissipation	T _C = 25 °C		104	104 2.5	
P _D	Power Dissipation	T _A = 25 °C	(Note 1a)	2.5		
T _J , T _{STG}	Operating and Storage Junction Temperature R	ange		-55 to +150	°C	

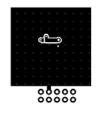
Thermal Characteristics

$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	1.2	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Note 1a)	50	C/vv

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS8848NZ	FDMS8848NZ	Power 56	13"	12 mm	3000 units

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics		r		1	
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	40			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C		28		mV/°C
IDSS	Zero Gate Voltage Drain Current	V _{DS} = 32 V, V _{GS} = 0 V			1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±10	μA
On Chara	cteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$	1.0	1.7	3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, referenced to 25 °C		-6		mV/°C
r _{DS(on)} Sta	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 22.8 A		2.6 3.1		
		V _{GS} = 4.5 V, I _D = 17.5 A		3.3	5.1	mΩ
. ,		V_{GS} = 10 V, I_{D} = 22.8 A, T_{J} = 125 °C		3.8	5.3	
9fs	Forward Transconductance	V _{DS} = 10 V, I _D = 22.8 A		130		S
C _{iss}	Characteristics Input Capacitance Output Capacitance	V _{DS} = 20 V, V _{GS} = 0 V,		6071	8075	pF
C _{oss}	Output Capacitance	f = 1 MHz		705	940	pF
C _{rss}	Reverse Transfer Capacitance			466	700	pF
R _g	Gate Resistance			1.4	2.8	Ω
Switching	Characteristics			1		
t _{d(on)}	Turn-On Delay Time	_		20	36	ns
t _r	Rise Time	$V_{DD} = 20 \text{ V}, \text{ I}_{D} = 22.8 \text{ A},$		19	35	ns
t _{d(off)}	Turn-Off Delay Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		63	101	ns
t _f	Fall Time			13	24	ns
Qg	Total Gate Charge	$V_{GS} = 0 V$ to 10 V		108	152	nC
Qg	Total Gate Charge	$V_{GS} = 0 V \text{ to } 5 V$ $V_{DD} = 20 V,$		57	80	nC
Q _{gs}	Gate to Source Charge	I _D = 22.8 A		17		nC
Q _{gd}	Gate to Drain "Miller" Charge			19		nC
Drain-Soເ	urce Diode Characteristics					
V	Source to Drain Diade Forward Vale	$V_{GS} = 0 V, I_S = 2.1 A$ (Note 2)		0.7	1.2	14
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 22.8 A (Note 2)	0.8 1.3		V	


NOTES:

t_{rr}

Q_{rr}

1. R_{0,JA} is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0,JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

 $I_F = 22.8 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$

Reverse Recovery Time

Reverse Recovery Charge

a. 50 °C/W when mounted on a 1 in² pad of 2 oz copper.

on a

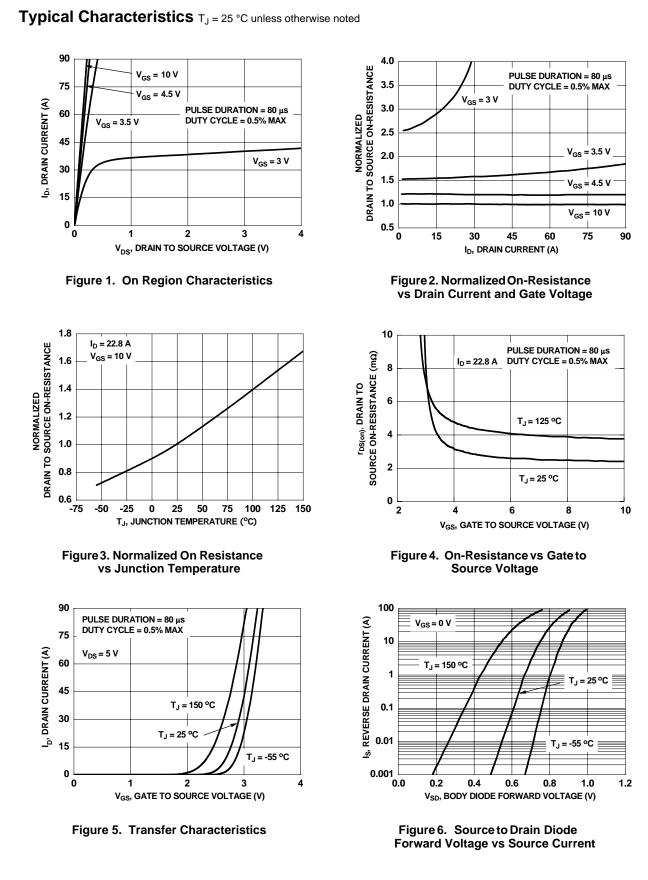
b. 125 °C/W when mounted on a minimum pad of 2 oz copper.

34

28

55

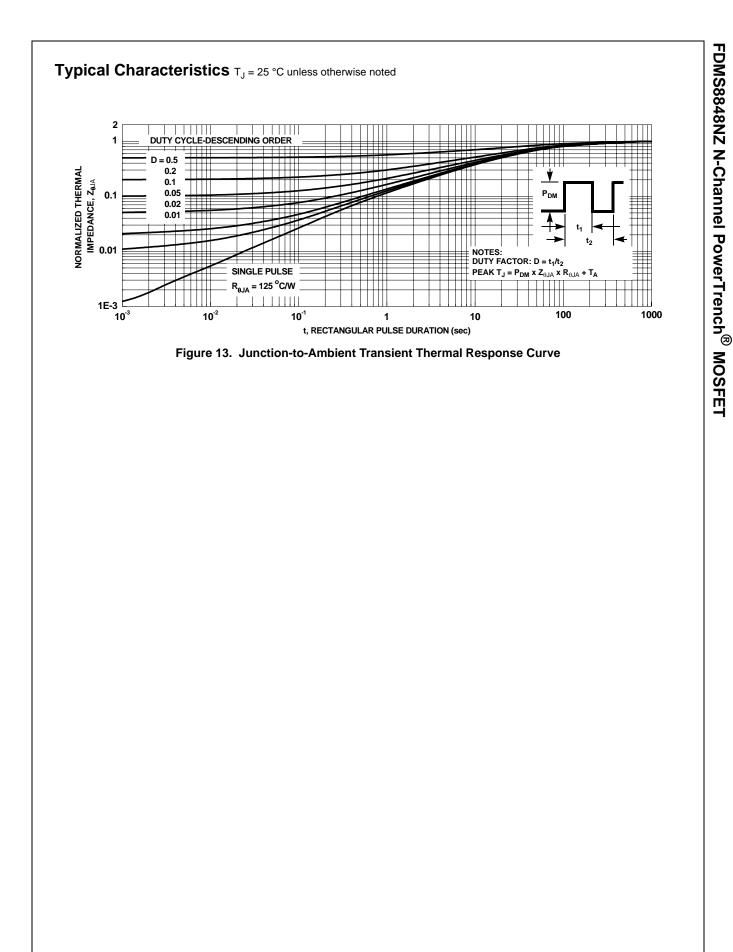
45

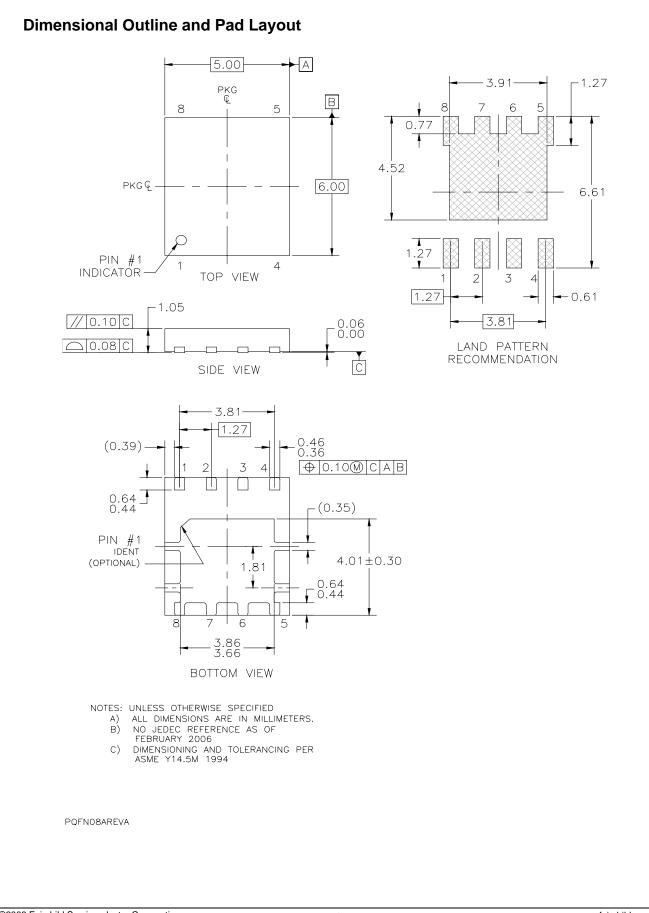

ns

nC

2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%.

3. Starting T_J = 25°C, L =1 mH, I_{AS} = 31 A, V_{DD} = 36 V, V_{GS} = 10 V




∟ ©2008 Fairchild Semiconductor Corporation FDMS8848NZ Rev. C

4

FDMS8848NZ N-Channel PowerTrench[®] MOSFET

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePLUS™	FPS™ F-PFS™	PDP SPM™ Power-SPM™	The Power Franchise [®]
CorePOWER™ <i>CROSSVOLT</i> ™ CTL™ Current Transfer Logic™ EcoSPARK [®] EfficentMax™ EZSWITCH™ * ™	FRFET [®] Global Power Resource SM Green FPS™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™	PowerTrench [®] Programmable Active Droop [™] QFET [®] Quiet Series [™] RapidConfigure [™] Saving our world, 1mW at a time [™] SmartMax [™] SMART START [™]	Franchise TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyPWM™
Fairchild [®] Fairchild [®] FACT Quiet Series [™] FACT [®] FAST [®] FastvCore [™] FlashWriter [®] *	MicroFET™ MicroFET™ MillerDrive™ MotionMax™ MotionSPM™ OPTOLOGIC® OPTOPLANAR®	SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-6 SuperSOT™-8 SuperMOS™ SyncFET™ ©SYSTEM ® GENERAL	Ultra FRFET™ UniFET™ VCX™ VisualMax™

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

EARCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Term

	Definition
Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
	First Production